
November, 2005

Advisor Answers

Using textbox for email address

VFP 9/8

Q: I need to have a textbox configured so that when the user types in
an email address, he can click on the email address and go to the

default email program. I know you can set the textbox property
EnableHyperlinks to True and the put "mailto:" in front of the email

address and it will work that way. But I don't want users to have to
type

"mailto:" in front of the email address.

–James Lansden (via Advisor forums)

A: This is an intriguing little problem. While setting up the Click to
start a new email is fairly simple, getting the textbox to behave as

users expect is a little trickier.

There are a number of prefixes you can add to the front of a string to

indicate that the string is a hyperlink. In addition to "mailto:", you can

use "http://" to indicate a web address, "ftp://" to indicate a file
transfer address and "news:" to point to a newsgroup.

Let me start with a quick look at the EnableHyperlinks property. Added
in VFP 8, this property of textboxes and editboxes determines whether

strings that look like links are treated as links. When EnableHyperlinks
is .T., any string beginning "www." or starting with one of the other

link prefixes is underlined and clickable. Depending on the
_VFP.EditorOptions setting, you can execute the link with either

Ctrl+Click or just a click.

So why not use this property? As you note, the problem is that it

requires the prefix for anything other than a web address beginning
with "www." Most users aren't familiar with the "mailto:" prefix, so you

rightly don't want them to have to type it. Fortunately, as is so often
the case with FoxPro, there are alternatives.

My immediate reaction to your problem was that you could handle it in

just a few steps. First, make sure you actually have an email address.
If so, add the "mailto:" tag at the front. Then, use ShellExecute to call

on the default email client. In fact, this is more or less the outline of

the solution, but as I worked on it, I realized that it could be far more

generic.

ShellExecute is an API function that lets you run the default application

for a file name or string. Rather than using it directly, you can take
advantage of the _ShellExecute class in the FoxPro Foundation

Classes. This class handles all the details of calling ShellExecute. All
you have to do is instantiate it and call its ShellExecute method,

passing the appropriate string.

The basic strategy for turning a textbox value into a link is the same

no matter which type of link it is. So, I created an abstract textbox
subclass that contains almost all the code for dealing with links. Then,

I subclassed for different types of links.

The abstract class is called txtLink. It has four custom properties:

 cPrefix—the prefix to add for this type of link. Empty in txtLink
and set in the subclasses.

 cUnderline—the name of a line object created to serve as the

underline for this textbox.
 lIsLink—indicates whether the current value of the textbox is a

link of the appropriate type.
 oShellExecute—object reference to a _ShellExecute object.

Two custom methods combine to execute the appropriate action when

the user clicks on the textbox value. FollowLink adds the prefix, if
necessary, and calls the _ShellExecute object's ShellExecute method.

LOCAL cLink, nPrefixLen

nPrefixLen = LEN(This.cPrefix)

IF UPPER(LEFT(This.Value, nPrefixLen))== ;
 UPPER(This.cPrefix)
 cLink = This.Value
ELSE
 cLink = ALLTRIM(This.cPrefix) + ALLTRIM(This.Value)
ENDIF

IF This.GetShellExecute()
 This.oShellExecute.ShellExecute(cLink)
ENDIF

GetShellExecute makes sure there's a reference to a _ShellExecute
object, instantiating one if necessary. Once it's instantiated, the

reference is saved, so that future clicks can use the same
_ShellExecute object.

IF VARTYPE(This.oShellExecute) <> "O"
 This.oShellExecute = NEWOBJECT("_ShellExecute", ;
 HOME() + "Ffc_Environ.vcx")
ENDIF

The Click method calls this code:

IF This.lIsLink
 This.FollowLink()
ENDIF

Another custom method, CheckFormat, examines the textbox's value
to see whether it has the appropriate format for a link of the specified

type. This method is abstract at this level; it needs to be filled in with
the appropriate test in each subclass.

The remaining code in txtLink deals with visual issues. To match user
expectations, when the textbox contains a link, the value should be

underlined. In addition, when clicking the value will fire the link, the
mouse pointer should indicate that.

MouseEnter and MouseLeave handle the mouse pointer. MouseEnter
checks whether the current value is a link and if so, switches to the

arrow pointer:

IF This.lIsLink
 This.MousePointer = 15
ENDIF

MouseLeave resets the pointer to its default value:

This.MousePointer = 0

Underlining the value to indicate a link is a little more complicated. My

first approach used FontUnderline and InputMask to make the textbox
underline itself. It turned out that getting it exactly right was difficult.

Instead, when the value of the textbox constitutes a link, I display a
line object beneath it. InteractiveChange handles adding and resizing

the line, as well as hiding it when the value no longer constitutes a
link. Here’s the code:

LOCAL oUnderline, lChanged, cStyle

This.lIsLink = This.CheckFormat()
IF This.lIsLink
 cStyle = ""
 IF This.FontBold
 cStyle = cStyle + "B"
 ENDIF

 IF This.FontItalic
 cStyle = cStyle + "I"
 ENDIF

 IF EMPTY(This.cUnderline)
 This.cUnderline = "linUnderline" + ;
 ALLTRIM(This.Name)
 ThisForm.AddObject(This.cUnderline,"Line")
 ENDIF

 oUnderline = EVALUATE("ThisForm." + This.cUnderline)
 WITH oUnderline
 .Left = This.Left + 5
 .Top = This.Top + FONTMETRIC(1, ;
 This.FontName,This.FontSize,cStyle)+ 1
 .Height = 0
 .BorderColor = RGB(0,0,255)
 .Visible = .T.

 * Adjust form font, if necessary
 IF ThisForm.FontName <> This.FontName OR ;
 ThisForm.FontSize <> This.FontSize OR ;
 ThisForm.FontBold <> This.FontBold OR ;
 ThisForm.FontItalic <> This.FontItalic

 * Save current settings
 lChanged = .T.
 WITH ThisForm
 .LockScreen = .T.
 cFontName = .FontName
 nFontSize = .FontSize
 lFontBold = .FontBold
 lFontItalic = .FontItalic

 .FontName = This.FontName
 .FontSize = This.FontSize
 .FontBold = This.FontBold
 .FontItalic = This.FontItalic
 ENDWITH
 ENDIF

 .Width = ThisForm.TextWidth(ALLTRIM(This.Value))
 IF oUnderline.Width > This.Width - 10
 * Max line out at end of textbox
 oUnderline.Width = This.Width - 10
 ENDIF

 * Now reset if necessary
 IF lChanged
 WITH ThisForm
 .FontName = cFontName
 .FontSize = nFontSize
 .FontBold = lFontBold
 .FontItalic = lFontItalic
 .LockScreen = .F.

 ENDWITH
 ENDIF
 ENDWITH

ELSE
 IF NOT EMPTY(This.cUnderline)
 oUnderline = EVALUATE("ThisForm." + ;
 This.cUnderline)
 oUnderline.Visible = .F.
 ENDIF
ENDIF

Keeping the line displayed is a little tricky. A number of things can

make it disappear. To ensure it’s visible when it should be, I added a
method called RepaintLine and call it from the Click and KeyPress

methods. RepaintLine is simple:

IF NOT EMPTY(This.cUnderline)
 oUnderline = EVALUATE("ThisForm." + This.cUnderline)
 oUnderline.Visible = .t.
ENDIF

KeyPress requires a little special handling. You need to call RepaintLine
after the keystroke has been processed. This code does the trick:

LPARAMETERS nKeyCode, nShiftAltCtrl

DODEFAULT(nKeyCode, nShiftAltCtrl)
IF (m.nKeyCode==9 and m.nShiftAltCtrl==0) OR ;
 (m.nKeyCode==15 and m.nShiftAltCtrl==1)
 * Do nothing to make TAB and SHIFT+TAB work
ELSE
 NODEFAULT
ENDIF

This.RepaintLine()

Even with all this, there's still one situation where the line disappears.

When the value is long enough to scroll the textbox, the line
disappears until the textbox loses focus. I've tried a couple of tricks to

get it back, but nothing works reliably, so make sure to size the
textbox large enough for the expected contents. (My thanks to Christof

for suggesting the line object and helping me work out some of the
visual issues.)

With all this code in place, the subclasses of txtLink don't require much
work. Set cPrefix to the appropriate string, and put code in

CheckFormat to check for a valid link of the specified type.

I created two subclasses, txtMailtoLink and txtHyperlink. In

txtMailtoLink, cPrefix is set to "Mailto:" and CheckFormat contains very
basic code to check for an email address. A string is considered a valid

email link if it contains the character "@", followed at some point by a
period. (For a more rigorous approach, see Pamela's answer in the

July, 2005 issue.)

LOCAL lReturn, cValue

lReturn = .F.
cValue = This.Value

IF "@"$cValue AND "."$SUBSTR(cValue, AT("@", cValue))
 lReturn = .T.
ENDIF

RETURN lReturn

In txtHyperlink, cPrefix is set to "http://" and CheckFormat contains
code that checks that the string either contains a period or begins

"http". Again, you may want to apply a more rigorous test. It doesn't

check for "www" because some web addresses don't require that
string.

* Check whether current value is a web address.

LOCAL lReturn, cValue

cValue = This.Value
lReturn = .F.

IF "."$cValue OR UPPER(LEFT(cValue, 4))="HTTP"
 lReturn = .T.
ENDIF

RETURN lReturn

All three classes (txtLink, txtMailtoLink and txtHyperlink in
WebControls.VCX) are included on this month's Professional Resource

CD, along with a very simple form that demonstrates their use. I'll
leave it to you as exercise to create the ftp and news subclasses.

–Tamar

